حل مساله زمان‌بندی پرسنل نیروگاهی چندهدفه با استفاده از روش جست‌وجوی پراکنده

نویسندگان

  • پریسا شاه‌نظری شاه‌رضائی * گروه مهندسی صنایع، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران. https://orcid.org/0000-0002-8897-500X
  • حامد کاظمی پور گروه مهندسی صنایع، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران.

https://doi.org/10.22105/msda.v2i1.58

چکیده

هدف: برنامه‌ریزی و زمان‌بندی نیروی‌انسانی یک رویکرد ترتیب‌دهی عناصر در یک الگوی زمانی یا مکانی به‌منظور رسیدن یا نزدیک‌ شدن به اهداف گوناگونی است، به‌طوری‌که محدودیت‌های مرتبط با این عناصر کاملا یا تقریبا برآورده شوند. درحقیقت، اولین گام از این فرآیند، تعیین تعداد کارکنان موردنیاز با مهارت‌های خاص به‌منظور تامین تقاضا در زمان‌های مختلف می­باشد. علاوه بر این، کلیه قوانین و توافقات کاری باید در طی فرآیند در نظر گرفته شوند.

روش‌شناسی پژوهش: بدین منظور در این مقاله، با استفاده از برنامه‌ریزی ریاضی مشخصات، شرایط، قوانین و توافقات کاری در نیروگاه شهید سلیمی نکا به‌عنوان یکی از نیروگاه‌های استراتژیک کشور و از مهم‌ترین سرمایه‌های ملی کشور در مساله گنجانده شده است. مساله زمان‌بندی نیروی‌انسانی در این نیروگاه شامل محدودیت‌های مختلف و درعین‌حال متناقض است. ازاین‌رو، تمرکز این تحقیق بر بررسی مساله زمان‌بندی نیروی‌انسانی بر پایه یک مدل چندهدفه می‌باشد. مدل ریاضی پیشنهادی سه تابع هدف دارد. کمینه نمودن تعداد نیروهایی با سطوح مهارتی بالا به کارهایی با سطح مهارت پایین، کمینه‌سازی دستمزد پرداختی به کارکنان و بهترین استفاده از نیروها. به دلیل ساختار حاکم بر مساله و پیچیدگی آن، مساله در دسته مسایل غیر چندجمله‌ای سخت قرار می‌گیرد دو الگوریتم فرا ابتکاری جست‌وجوی پراکنده[1] و ژنتیک با مرتب‌سازی غیر مغلوب[2] برای حل مدل چندهدفه تعمیم داده شده است. به‌منظور ارزیابی عملکرد الگوریتم­های پیشنهادی، هفت مساله نمونه با استفاده از الگوریتم‌های تعمیم‌یافته حل شده ‌است.

یافتهها: درمجموع، نتایج به‌دست‌آمده از حل مسایل در اندازه­های مختلف با استفاده نمودارهای شاخص‌های عملکردی و مقایسه بین دو الگوریتم، نشان از بهتر بودن الگوریتم جست‌وجوی پراکنده در دو شاخص کیفی کیفیت و پراکندگی و بهتر عمل کردن الگوریتم ژنتیک با مرتب‌سازی غیرمغلوب در شاخص کمی یکنواختی فضا می‌باشد.

اصالت/ارزش افزوده علمی: نتایج حاصل از پیاده‌سازی این مدل در نیروگاه‌ها می‌تواند منجر به بهبود کارایی عملیاتی، افزایش بهره‌وری نیروی انسانی و ارتقای کیفیت خدمات شود.

کلمات کلیدی:

زمان‌بندی نیروی‌انسانی، برنامه‌ریزی، مدل چندهدفه

مراجع

  1. [1] Dantzig, G. B. (1954). Letter to the editor-a comment on edie’s. Traffic delays at toll booths, journal of the operations research society of america, 2(3), 339–341. https://doi.org/10.1287/opre.2.3.339

  2. [2] Sadjadi, S. J., Heidari, M., & Alinezhad Esboei, A. (2014). Augmented ε-constraint method in multiobjective staff scheduling problem: a case study. The international journal of advanced manufacturing technology, 70, 1505–1514. https://doi.org/10.1007/s00170-013-5352-8

  3. [3] Brucker, P., Qu, R., & Burke, E. (2011). Personnel scheduling: Models and complexity. European journal of operational research, 210(3), 467–473. https://doi.org/10.1016/j.ejor.2010.11.017

  4. [4] Tien, J. M., & Kamiyama, A. (1982). On manpower scheduling algorithms. Society for industrial and applied mathematics 24(3), 275–287. https://doi.org/10.1137/1024063

  5. [5] Baker, K. R. (1976). Workforce allocation in cyclical scheduling problems: A survey. Journal of the operational research society, 27(1), 155–167. https://doi.org/10.1057/jors.1976.30

  6. [6] De Causmaecker, P., Demeester, P., Berghe, G. Vanden, & Verbeke, B. (2004). Analysis of real-world personnel scheduling problems. Proceedings of the 5th international conference on practice and theory of automated timetabling, pittsburgh (pp. 183–197). PATAT. https://patatconference.org/patat2004/proceedings/183.pdf

  7. [7] Bard, J. F. (2004). Selecting the appropriate input data set when configuring a permanent workforce. Computers & industrial engineering, 47(4), 371–389. https://doi.org/10.1016/j.cie.2004.09.004

  8. [8] Burke, E. K., De Causmaecker, P., Berghe, G. Vanden, & Van Landeghem, H. (2004). The state of the art of nurse rostering. Journal of scheduling, 7, 441–499. https://doi.org/10.1023/B:JOSH.0000046076.75950.0b

  9. [9] Raff, S. (1983). Routing and scheduling of vehicles and crews: the state of the art. Computers & operations research, 10(2), 63–211. https://doi.org/10.1016/0305-0548(83)90030-8

  10. [10] Mercier, A., Cordeau, J. F., & Soumis, F. (2005). A computational study of Benders decomposition for the integrated aircraft routing and crew scheduling problem. Computers & operations research, 32(6), 1451–1476. https://doi.org/10.1016/j.cor.2003.11.013

  11. [11] Rodrigues, M. M., de Souza, C. C., & Moura, A. V. (2006). Vehicle and crew scheduling for urban bus lines. European journal of operational research, 170(3), 844–862. https://doi.org/10.1016/j.ejor.2004.06.035

  12. [12] Franz, L. S., Baker, H. M., Leong, G. K., & Rakes, T. R. (1989). A mathematical model for scheduling and staffing multiclinic health regions. European journal of operational research, 41(3), 277–289. https://doi.org/10.1016/0377-2217(89)90249-X

  13. [13] And, R. G. M., & Johnson, D. S. (1983). Computers and Intractability: A guide to the theory of NP-completeness. WH freeman & co., san francisco, 48(2), 498–500. https://doi.org/10.2307/2273574

  14. [14] Brigandi, A. J., Dargon, D. R., Sheehan, M. J., & Spencer III, T. (1994). AT &T’s call processing simulator (CAPS) operational design for inbound call centers. Interfaces, 24(1), 6–28. https://doi.org/10.1287/inte.24.1.6

  15. [15] Parkan, C., Lam, K., & Chan, H. N. (1999). Workforce planning at a bill inquiries centre. International journal of modelling and simulation, 19(2), 118–126. https://doi.org/10.1080/02286203.1999.11760411

  16. [16] Buffa, E. S., Cosgrove, M. J., & Luce, B. J. (1976). An integrated work shift scheduling system. Decision sciences, 7(4), 620–630. DOI: https://doi.org/10.1111/j.1540-5915.1976.tb00706.x

  17. [17] Molnar, G., Jakobović, D., & Pavelić, M. (2016). Workforce scheduling in inbound customer call centres with a case study. Applications of evolutionary computation: 19th european conference, evoapplications 2016, porto, portugal, march 30--april 1, 2016, proceedings, part i 19 (pp. 831–846). Springer. https://doi.org/10.1007/978-3-319-31204-0_53

  18. [18] Ertogral, K., & Bamuqabel, B. (2008). Developing staff schedules for a bilingual telecommunication call center with flexible workers. Computers & industrial engineering, 54(1), 118–127. https://doi.org/10.1016/j.cie.2007.06.040

  19. [19] Avramidis, A. N., Chan, W., Gendreau, M., L’ecuyer, P., & Pisacane, O. (2010). Optimizing daily agent scheduling in a multiskill call center. European journal of operational research, 200(3), 822–832. https://doi.org/10.1016/j.ejor.2009.01.042

  20. [20] Arabeyre, J. P., Fearnley, J., Steiger, F. C., & Teather, W. (1969). The airline crew scheduling problem: A survey. Transportation science, 3(2), 140–163. https://doi.org/10.1287/trsc.3.2.140

  21. [21] Anbil, R., Gelman, E., Patty, B., & Tanga, R. (1991). Recent advances in crew-pairing optimization at American Airlines. Interfaces, 21(1), 62–74. https://doi.org/10.1287/inte.21.1.62

  22. [22] Mercier, A., & Soumis, F. (2007). An integrated aircraft routing, crew scheduling and flight retiming model. Computers & operations research, 34(8), 2251–2265. https://doi.org/10.1016/j.cor.2005.09.001

  23. [23] Weide, O., Ryan, D., & Ehrgott, M. (2010). An iterative approach to robust and integrated aircraft routing and crew scheduling. Computers & operations research, 37(5), 833–844. https://doi.org/10.1016/j.cor.2009.03.024

  24. [24] Dück, V., Ionescu, L., Kliewer, N., & Suhl, L. (2012). Increasing stability of crew and aircraft schedules. Transportation research part c: Emerging technologies, 20(1), 47–61. https://doi.org/10.1016/j.trc.2011.02.009

  25. [25] Stojković, M., Soumis, F., & Desrosiers, J. (1998). The operational airline crew scheduling problem. Transportation science, 32(3), 232–245. https://doi.org/10.1287/trsc.32.3.232

  26. [26] Dillon, J. E., & Kontogiorgis, S. (1999). US Airways optimizes the scheduling of reserve flight crews. Interfaces, 29(5), 123–131. https://doi.org/10.1287/inte.29.5.123

  27. [27] Sze, S.-N., Suk Fong, A. N., & Chiew, K. L. (2012). An insertion heuristic manpower scheduling for in-flight catering service application. Computational logistics: third international conference, iccl 2012, (pp. 206–216). ICCL. https://doi.org/10.1007/978-3-642-33587-7_15

  28. [28] Guo, Y., Mellouli, T., Suhl, L., & Thiel, M. P. (2006). A partially integrated airline crew scheduling approach with time-dependent crew capacities and multiple home bases. European journal of operational research, 171(3), 1169–1181. https://doi.org/10.1016/j.ejor.2005.01.024

  29. [29] Zeghal, F. M., & Minoux, M. (2006). Modeling and solving a crew assignment problem in air transportation. European journal of operational research, 175(1), 187–209. https://doi.org/10.1016/j.ejor.2004.11.028

  30. [30] Medard, C. P., & Sawhney, N. (2007). Airline crew scheduling from planning to operations. European journal of operational research, 183(3), 1013–1027. https://doi.org/10.1016/j.ejor.2005.12.046

  31. [31] Souai, N., & Teghem, J. (2009). Genetic algorithm based approach for the integrated airline crew-pairing and rostering problem. European journal of operational research, 199(3), 674–683. https://doi.org/10.1016/j.ejor.2007.10.065

  32. [32] Ho, S. C., & Leung, J. M. Y. (2010). Solving a manpower scheduling problem for airline catering using metaheuristics. European journal of operational research, 202(3), 903–921. https://doi.org/10.1016/j.ejor.2009.06.030

  33. [33] Ghiani, G., Guerriero, E., Manni, A., Manni, E., & Potenza, A. (2013). Simultaneous personnel and vehicle shift scheduling in the waste management sector. Waste management, 33(7), 1589–1594. https://doi.org/10.1016/j.wasman.2013.04.001

  34. [34] Peters, E., de Matta, R., & Boe, W. (2007). Short-term work scheduling with job assignment flexibility for a multi-fleet transport system. European journal of operational research, 180(1), 82–98. https://doi.org/10.1016/j.ejor.2006.02.032

  35. [35] de Matta, R., & Peters, E. (2009). Developing work schedules for an inter-city transit system with multiple driver types and fleet types. European journal of operational research, 192(3), 852–865. https://doi.org/10.1016/j.ejor.2007.09.045

  36. [36] Al-Yakoob, S. M., & Sherali, H. D. (2007). Mixed-integer programming models for an employee scheduling problem with multiple shifts and work locations. Annals of operations research, 155, 119–142. https://doi.org/10.1007/s10479-007-0210-4

  37. [37] Bard, J. F., & Purnomo, H. W. (2005). A column generation-based approach to solve the preference scheduling problem for nurses with downgrading. Socio-economic planning sciences, 39(3), 193–213. https://doi.org/10.1016/j.seps.2004.04.001

  38. [38] Beliën, J., & Demeulemeester, E. (2008). A branch-and-price approach for integrating nurse and surgery scheduling. European journal of operational research, 189(3), 652–668. https://doi.org/10.1016/j.ejor.2006.10.060

  39. [39] Dowsland, K. A., & Thompson, J. M. (2000). Solving a nurse scheduling problem with knapsacks, networks and tabu search. Journal of the operational research society, 51(7), 825–833. https://doi.org/10.1057/palgrave.jors.2600970

  40. [40] Aickelin, U., & Dowsland, K. A. (2004). An indirect genetic algorithm for a nurse-scheduling problem. Computers & operations research, 31(5), 761–778. https://doi.org/10.1016/S0305-0548(03)00034-0

  41. [41] Jaumard, B., Semet, F., & Vovor, T. (1998). A generalized linear programming model for nurse scheduling. European journal of operational research, 107(1), 1–18. https://doi.org/10.1016/S0377-2217(97)00330-5

  42. [42] Cheng, B. M. W., Lee, J. H. M., & Wu, J. C. K. (1997). A nurse rostering system using constraint programming and redundant modeling. IEEE transactions on information technology in biomedicine, 1(1), 44–54. https://doi.org/10.1109/4233.594027

  43. [43] Siferd, S. P., & Benton, W. C. (1994). A decision modes for shift scheduling of nurses. European journal of operational research, 74(3), 519–527. https://doi.org/10.1016/0377-2217(94)90228-3

  44. [44] Nooriafshar, M. (1995). A heuristic approach to improving the design of nurse training schedules. European journal of operational research, 81(1), 50–61. https://doi.org/10.1016/0377-2217(93)E0131-G

  45. [45] Lukman, D., May, J. H., Shuman, L. J., & Wolfe, H. B. (1991). Knowledge-based schedule formulation and maintenance under uncertainty. Journal of the society for health systems, 2(2), 42–64. https://europepmc.org/article/med/1760545

  46. [46] Burke, E., De Causmaecker, P., & Vanden Berghe, G. (1999). A hybrid tabu search algorithm for the nurse rostering problem. Simulated evolution and learning: Second asia-pacific conference on simulated evolution and learning. (pp. 187–194). Springer. https://doi.org/10.1007/3-540-48873-1_25

  47. [47] Burke, E., Cowling, P., De Causmaecker, P., & Berghe, G. Vanden. (2001). A memetic approach to the nurse rostering problem. Applied intelligence, 15, 199–214. https://doi.org/10.1023/A:1011291030731

  48. [48] Bellanti, F., Carello, G., Della Croce, F., & Tadei, R. (2004). A greedy-based neighborhood search approach to a nurse rostering problem. European journal of operational research, 153(1), 28–40. https://doi.org/10.1016/S0377-2217(03)00096-1

  49. [49] Gutjahr, W. J., & Rauner, M. S. (2007). An ACO algorithm for a dynamic regional nurse-scheduling problem in Austria. Computers & operations research, 34(3), 642–666. https://doi.org/10.1016/j.cor.2005.03.018

  50. [50] Burke, E. K., Li, J., & Qu, R. (2010). A hybrid model of integer programming and variable neighbourhood search for highly-constrained nurse rostering problems. European journal of operational research, 203(2), 484–493. https://doi.org/10.1016/j.ejor.2009.07.036

  51. [51] Glass, C. A., & Knight, R. A. (2010). The nurse rostering problem: A critical appraisal of the problem structure. European journal of operational research, 202(2), 379–389. https://doi.org/10.1016/j.ejor.2009.05.046

  52. [52] Topaloglu, S., & Selim, H. (2010). Nurse scheduling using fuzzy modeling approach. Fuzzy sets and systems, 161(11), 1543–1563. https://doi.org/10.1016/j.fss.2009.10.003

  53. [53] Bertels, S., & Fahle, T. (2006). A hybrid setup for a hybrid scenario: combining heuristics for the home health care problem. Computers & operations research, 33(10), 2866–2890. https://doi.org/10.1016/j.cor.2005.01.015

  54. [54] Eveborn, P., Flisberg, P., & Rönnqvist, M. (2006). Laps Care an operational system for staff planning of home care. European journal of operational research, 171(3), 962–976. https://doi.org/10.1016/j.ejor.2005.01.011

  55. [55] Akjiratikarl, C., Yenradee, P., & Drake, P. R. (2007). PSO-based algorithm for home care worker scheduling in the UK. Computers & industrial engineering, 53(4), 559–583. https://doi.org/10.1016/j.cie.2007.06.002

  56. [56] Chien, C.-F., Tseng, F.-P., & Chen, C.-H. (2008). An evolutionary approach to rehabilitation patient scheduling: A case study. European journal of operational research, 189(3), 1234–1253. https://doi.org/10.1016/j.ejor.2007.01.062

  57. [57] Topaloglu, S. (2006). A multi-objective programming model for scheduling emergency medicine residents. Computers & industrial engineering, 51(3), 375–388. https://doi.org/10.1016/j.cie.2006.08.003

  58. [58] Topaloglu, S. (2009). A shift scheduling model for employees with different seniority levels and an application in healthcare. European journal of operational research, 198(3), 943–957. https://doi.org/10.1016/j.ejor.2008.10.032

  59. [59] Yang, C. C., Lin, W. T., Chen, H. M., & Shi, Y. H. (2009). Improving scheduling of emergency physicians using data mining analysis. Expert systems with applications, 36(2), 3378–3387. https://doi.org/10.1016/j.eswa.2008.02.069

  60. [60] Beliën, J., Demeulemeester, E., & Cardoen, B. (2009). A decision support system for cyclic master surgery scheduling with multiple objectives. Journal of scheduling, 12(2), 147–161. https://doi.org/10.1007/s10951-008-0086-4

  61. [61] Butler, D. B., & Maydell, U. M. (1979). Manpower scheduling in the edmonton police department. INFOR: Information systems and operational research, 17(4), 366–372. https://doi.org/10.1080/03155986.1979.11731754

  62. [62] Sinuany-Stern, Z., & Teomi, Y. (1986). Multi-objective scheduling plans for security guards. Journal of the operational research society, 37(1), 67–77. https://doi.org/10.1057/jors.1986.9

  63. [63] Taylor, P. E., & Huxley, S. J. (1989). A break from tradition for the San Francisco police: Patrol officer scheduling using an optimization-based decision support system. Interfaces, 19(1), 4–24. https://doi.org/10.1287/inte.19.1.4

  64. [64] Ernst, A., Hourigan, P., Krishnamoorthy, M., Mills, G., Nott, H., & Sier, D. (1999). Rostering ambulance officers. Proceedings of the 15th national conference of the australian society for operations research, gold coast (pp. 470–481). Gold Coast. https://doi.org/10.1007/978-3-540-72397-4_3

  65. [65] Rajagopalan, H. K., & Saydam, C. (2009). A minimum expected response model: formulation, heuristic solution, and application. Socio-economic planning sciences, 43(4), 253–262. https://doi.org/10.1016/j.seps.2008.12.003

  66. [66] Fernandez-Viagas, V., & Framinan, J. M. (2014). Integrated project scheduling and staff assignment with controllable processing times. The scientific world journal, 2014(1), 924120. https://doi.org/10.1155/2014/924120

  67. [67] Mould, G. I. (1996). Case study of manpower planning for clerical operations. Journal of the operational research society, 47(3), 358–368. https://doi.org/10.1057/jors.1996.35

  68. [68] Buffa, E. S., Krajewski, L. J., & Ritzman, L. P. (1977). Disaggregation in manufacturing and service organizations: survey of problems and research. Decision sciences, 8(1), 1–18. https://doi.org/10.1111/j.1540-5915.1977.tb01064.x

  69. [69] Rocha, M., Oliveira, J. F., & Carravilla, M. A. (2014). A constructive heuristic for staff scheduling in the glass industry. Annals of operations research, 217, 463–478. https://doi.org/10.1007/s10479-013-1525-y

  70. [70] Hasani-Goodarzi, A., Rabbani, M., & Manavizade, N. (2012). A novel mathematical model for manpower scheduling in break (relief) times in mixed model assembly lines. Procedia-social and behavioral sciences, 62, 1371–1377. https://doi.org/10.1016/j.sbspro.2012.09.234

  71. [71] SHAHNAZARI, S. P., TAVAKKOLI, M. R., & Kazemipoor, H. (2011). Solving a bi-objective manpower scheduling problem considering the utility of objective functions. https://doi.org/10.5829/idosi.ije.2011.24.03b.05

  72. [72] Savino, M. M., Brun, A., & Mazza, A. (2014). Dynamic workforce allocation in a constrained flow shop with multi-agent system. Computers in industry, 65(6), 967–975. https://doi.org/10.1016/j.compind.2014.02.016

  73. [73] Lilly, M. T., Emovon, I., Ogaji, S. O. T., & Probert, S. D. (2007). Four-day service-staff work-week in order to complete maintenance operations more effectively in a Nigerian power-generating station. Applied energy, 84(10), 1044–1055. https://doi.org/10.1016/j.apenergy.2007.02.012

  74. [74] Yare, Y., & Venayagamoorthy, G. K. (2010). Optimal maintenance scheduling of generators using multiple swarms-MDPSO framework. Engineering applications of artificial intelligence, 23(6), 895–910. https://doi.org/10.1016/j.engappai.2010.05.006

  75. [75] Eitzen, G. (1999). Rostering multi-skilled employees efficiently and fairly: a column generation and constraint branching approach. http://dx.doi.org/10.1023/B:ANOR.0000019087.46656.e2

  76. [76] Ernst, A. T., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff scheduling and rostering: A review of applications, methods and models. European journal of operational research, 153(1), 3–27. https://doi.org/10.1016/S0377-2217(03)00095-X

  77. [77] Kazemipoor, H., Tavakkoli-Moghaddam, R., & Shahnazari-Shahrezaei, P. (2013). Solving a novel multi-skilled project scheduling model by scatter search. South african journal of industrial engineering, 24(1), 121–131. https://B2n.ir/eq9165

  78. [78] Williams, H. P. (2013). Model building in mathematical programming. John Wiley & Sons. https://B2n.ir/zf8236

  79. [79] Koppula, K., & Rodrigues, L. L. R. (2012). Job scheduling of nurse staffing: A dynamic programming approacH. International journal of research in commerce, it & management, 2(1). https://B2n.ir/zk8087

  80. [80] Clausen, T. (2010). A dynamic programming-based heuristic for the shift design problem in airport ground handling. https://B2n.ir/gw1150

  81. [81] Burke, E. K., & Curtois, T. (2010). An ejection chain method and a branch and price algorithm applied to the instances of the first international nurse rostering competition, 2010. Proceedings of the 8th international conference on the practice and theory of automated timetabling patat (Vol. 10, p. 13). Queen's university belfast. https://B2n.ir/gq8796

  82. [82] Brunner, J. O., & Bard, J. F. (2013). Flexible weekly tour scheduling for postal service workers using a branch and price. Journal of scheduling, 16, 129–149. https://doi.org/10.1007/s10951-011-0265-6

  83. [83] Shahnazari-Shahrezaei, P., Tavakkoli-Moghaddam, R., & Kazemipoor, H. (2013). Solving a new fuzzy multi-objective model for a multi-skilled manpower scheduling problem by particle swarm optimization and elite tabu search. The international journal of advanced manufacturing technology, 64, 1517–1540. https://doi.org/10.1007/s00170-012-4119-y

  84. [84] Cai, Y., Zhang, Z., Guo, S., Qin, H., & Lim, A. (2013). A tree-based tabu search algorithm for the manpower allocation problem with timewindows and job-teaming constraints. IJCAI (pp. 496–502). IJCAI. https://www.ijcai.org/Proceedings/13/Papers/081.pdf

  85. [85] Mohan, B. C., & Baskaran, R. (2012). A survey: Ant colony optimization based recent research and implementation on several engineering domain. Expert systems with applications, 39(4), 4618–4627. https://doi.org/10.1016/j.eswa.2011.09.076

  86. [86] Iacopino, C., Palmer, P., Brewer, A., Policella, N., & Donati, A. (2013). EO constellation mps based on ant colony optimization algorithms. 2013 6th international conference on recent advances in space technologies (RAST) (pp. 159–164). IEEE. https://doi.org/10.1109/RAST.2013.6581192

  87. [87] Kazemipoor, H., Tavakkoli-Moghaddam, R., & Shahnazari-Shahrezaei, P. (2002). Solving a mixed-integer linear programming model for a multi-skilled project scheduling problem by simulated annealing. Management science letters, 2(2), 681–688. https://doi.org/10.5267/j.msl.2011.10.010

  88. [88] Chan, F. T. S., Prakash, A., Ma, H. L., & Wong, C. S. (2013). A hybrid Tabu sample-sort simulated annealing approach for solving distributed scheduling problem. International journal of production research, 51(9), 2602–2619. https://doi.org/10.1080/00207543.2012.737948

  89. [89] Alfadilla, N., Sentia, P. D., & Asmadi, D. (2019, June). Optimization of nurse scheduling problem using genetic algorithm: a case study. In IOP conference series: Materials science and engineering (Vol. 536, No. 1, p. 012131). IOP Publishing. https://doi.org/10.1088/1757-899X/536/1/012131

  90. [90] Yang, F. C., & Wu, W. T. (2012). A genetic algorithm-based method for creating impartial work schedules for nurses. International journal of electronic business management, 10(3), 182. https://B2n.ir/pn8755

  91. [91] Gao, S. C., & Lin, C. W. (2013). Particle swarm optimization based nurses’ shift scheduling. Proceedings of the institute of industrial engineers asian conference 2013 (pp. 775–782). Springer. https://doi.org/10.1007/978-981-4451-98-7_93

  92. [92] Glover, F. (1977). Heuristics for integer programming using surrogate constraints. Decision sciences, 8(1), 156–166. https://doi.org/10.1111/j.1540-5915.1977.tb01074.x

  93. [93] Glover, F. (1997). A template for scatter search and path relinking. European conference on artificial evolution (pp. 1–51). Springer. https://doi.org/10.1007/BFb0026589

چاپ شده

2024-03-18

شماره

نوع مقاله

مقالات شماره جاری

ارجاع به مقاله

شاه‌نظری شاه‌رضائی پ., & کاظمی پور ح. (2024). حل مساله زمان‌بندی پرسنل نیروگاهی چندهدفه با استفاده از روش جست‌وجوی پراکنده. علوم مدیریت و تحلیل تصمیم , 3(1), 65-90. https://doi.org/10.22105/msda.v2i1.58

مقالات مشابه

همچنین برای این مقاله می‌توانید شروع جستجوی پیشرفته مقالات مشابه.