حل مساله زمانبندی پرسنل نیروگاهی چندهدفه با استفاده از روش جستوجوی پراکنده
چکیده
هدف: برنامهریزی و زمانبندی نیرویانسانی یک رویکرد ترتیبدهی عناصر در یک الگوی زمانی یا مکانی بهمنظور رسیدن یا نزدیک شدن به اهداف گوناگونی است، بهطوریکه محدودیتهای مرتبط با این عناصر کاملا یا تقریبا برآورده شوند. درحقیقت، اولین گام از این فرآیند، تعیین تعداد کارکنان موردنیاز با مهارتهای خاص بهمنظور تامین تقاضا در زمانهای مختلف میباشد. علاوه بر این، کلیه قوانین و توافقات کاری باید در طی فرآیند در نظر گرفته شوند.
روششناسی پژوهش: بدین منظور در این مقاله، با استفاده از برنامهریزی ریاضی مشخصات، شرایط، قوانین و توافقات کاری در نیروگاه شهید سلیمی نکا بهعنوان یکی از نیروگاههای استراتژیک کشور و از مهمترین سرمایههای ملی کشور در مساله گنجانده شده است. مساله زمانبندی نیرویانسانی در این نیروگاه شامل محدودیتهای مختلف و درعینحال متناقض است. ازاینرو، تمرکز این تحقیق بر بررسی مساله زمانبندی نیرویانسانی بر پایه یک مدل چندهدفه میباشد. مدل ریاضی پیشنهادی سه تابع هدف دارد. کمینه نمودن تعداد نیروهایی با سطوح مهارتی بالا به کارهایی با سطح مهارت پایین، کمینهسازی دستمزد پرداختی به کارکنان و بهترین استفاده از نیروها. به دلیل ساختار حاکم بر مساله و پیچیدگی آن، مساله در دسته مسایل غیر چندجملهای سخت قرار میگیرد دو الگوریتم فرا ابتکاری جستوجوی پراکنده[1] و ژنتیک با مرتبسازی غیر مغلوب[2] برای حل مدل چندهدفه تعمیم داده شده است. بهمنظور ارزیابی عملکرد الگوریتمهای پیشنهادی، هفت مساله نمونه با استفاده از الگوریتمهای تعمیمیافته حل شده است.
یافتهها: درمجموع، نتایج بهدستآمده از حل مسایل در اندازههای مختلف با استفاده نمودارهای شاخصهای عملکردی و مقایسه بین دو الگوریتم، نشان از بهتر بودن الگوریتم جستوجوی پراکنده در دو شاخص کیفی کیفیت و پراکندگی و بهتر عمل کردن الگوریتم ژنتیک با مرتبسازی غیرمغلوب در شاخص کمی یکنواختی فضا میباشد.
اصالت/ارزش افزوده علمی: نتایج حاصل از پیادهسازی این مدل در نیروگاهها میتواند منجر به بهبود کارایی عملیاتی، افزایش بهرهوری نیروی انسانی و ارتقای کیفیت خدمات شود.
کلمات کلیدی:
زمانبندی نیرویانسانی، برنامهریزی، مدل چندهدفهمراجع
- [1] Dantzig, G. B. (1954). Letter to the editor-a comment on edie’s. Traffic delays at toll booths, journal of the operations research society of america, 2(3), 339–341. https://doi.org/10.1287/opre.2.3.339
- [2] Sadjadi, S. J., Heidari, M., & Alinezhad Esboei, A. (2014). Augmented ε-constraint method in multiobjective staff scheduling problem: a case study. The international journal of advanced manufacturing technology, 70, 1505–1514. https://doi.org/10.1007/s00170-013-5352-8
- [3] Brucker, P., Qu, R., & Burke, E. (2011). Personnel scheduling: Models and complexity. European journal of operational research, 210(3), 467–473. https://doi.org/10.1016/j.ejor.2010.11.017
- [4] Tien, J. M., & Kamiyama, A. (1982). On manpower scheduling algorithms. Society for industrial and applied mathematics 24(3), 275–287. https://doi.org/10.1137/1024063
- [5] Baker, K. R. (1976). Workforce allocation in cyclical scheduling problems: A survey. Journal of the operational research society, 27(1), 155–167. https://doi.org/10.1057/jors.1976.30
- [6] De Causmaecker, P., Demeester, P., Berghe, G. Vanden, & Verbeke, B. (2004). Analysis of real-world personnel scheduling problems. Proceedings of the 5th international conference on practice and theory of automated timetabling, pittsburgh (pp. 183–197). PATAT. https://patatconference.org/patat2004/proceedings/183.pdf
- [7] Bard, J. F. (2004). Selecting the appropriate input data set when configuring a permanent workforce. Computers & industrial engineering, 47(4), 371–389. https://doi.org/10.1016/j.cie.2004.09.004
- [8] Burke, E. K., De Causmaecker, P., Berghe, G. Vanden, & Van Landeghem, H. (2004). The state of the art of nurse rostering. Journal of scheduling, 7, 441–499. https://doi.org/10.1023/B:JOSH.0000046076.75950.0b
- [9] Raff, S. (1983). Routing and scheduling of vehicles and crews: the state of the art. Computers & operations research, 10(2), 63–211. https://doi.org/10.1016/0305-0548(83)90030-8
- [10] Mercier, A., Cordeau, J. F., & Soumis, F. (2005). A computational study of Benders decomposition for the integrated aircraft routing and crew scheduling problem. Computers & operations research, 32(6), 1451–1476. https://doi.org/10.1016/j.cor.2003.11.013
- [11] Rodrigues, M. M., de Souza, C. C., & Moura, A. V. (2006). Vehicle and crew scheduling for urban bus lines. European journal of operational research, 170(3), 844–862. https://doi.org/10.1016/j.ejor.2004.06.035
- [12] Franz, L. S., Baker, H. M., Leong, G. K., & Rakes, T. R. (1989). A mathematical model for scheduling and staffing multiclinic health regions. European journal of operational research, 41(3), 277–289. https://doi.org/10.1016/0377-2217(89)90249-X
- [13] And, R. G. M., & Johnson, D. S. (1983). Computers and Intractability: A guide to the theory of NP-completeness. WH freeman & co., san francisco, 48(2), 498–500. https://doi.org/10.2307/2273574
- [14] Brigandi, A. J., Dargon, D. R., Sheehan, M. J., & Spencer III, T. (1994). AT &T’s call processing simulator (CAPS) operational design for inbound call centers. Interfaces, 24(1), 6–28. https://doi.org/10.1287/inte.24.1.6
- [15] Parkan, C., Lam, K., & Chan, H. N. (1999). Workforce planning at a bill inquiries centre. International journal of modelling and simulation, 19(2), 118–126. https://doi.org/10.1080/02286203.1999.11760411
- [16] Buffa, E. S., Cosgrove, M. J., & Luce, B. J. (1976). An integrated work shift scheduling system. Decision sciences, 7(4), 620–630. DOI: https://doi.org/10.1111/j.1540-5915.1976.tb00706.x
- [17] Molnar, G., Jakobović, D., & Pavelić, M. (2016). Workforce scheduling in inbound customer call centres with a case study. Applications of evolutionary computation: 19th european conference, evoapplications 2016, porto, portugal, march 30--april 1, 2016, proceedings, part i 19 (pp. 831–846). Springer. https://doi.org/10.1007/978-3-319-31204-0_53
- [18] Ertogral, K., & Bamuqabel, B. (2008). Developing staff schedules for a bilingual telecommunication call center with flexible workers. Computers & industrial engineering, 54(1), 118–127. https://doi.org/10.1016/j.cie.2007.06.040
- [19] Avramidis, A. N., Chan, W., Gendreau, M., L’ecuyer, P., & Pisacane, O. (2010). Optimizing daily agent scheduling in a multiskill call center. European journal of operational research, 200(3), 822–832. https://doi.org/10.1016/j.ejor.2009.01.042
- [20] Arabeyre, J. P., Fearnley, J., Steiger, F. C., & Teather, W. (1969). The airline crew scheduling problem: A survey. Transportation science, 3(2), 140–163. https://doi.org/10.1287/trsc.3.2.140
- [21] Anbil, R., Gelman, E., Patty, B., & Tanga, R. (1991). Recent advances in crew-pairing optimization at American Airlines. Interfaces, 21(1), 62–74. https://doi.org/10.1287/inte.21.1.62
- [22] Mercier, A., & Soumis, F. (2007). An integrated aircraft routing, crew scheduling and flight retiming model. Computers & operations research, 34(8), 2251–2265. https://doi.org/10.1016/j.cor.2005.09.001
- [23] Weide, O., Ryan, D., & Ehrgott, M. (2010). An iterative approach to robust and integrated aircraft routing and crew scheduling. Computers & operations research, 37(5), 833–844. https://doi.org/10.1016/j.cor.2009.03.024
- [24] Dück, V., Ionescu, L., Kliewer, N., & Suhl, L. (2012). Increasing stability of crew and aircraft schedules. Transportation research part c: Emerging technologies, 20(1), 47–61. https://doi.org/10.1016/j.trc.2011.02.009
- [25] Stojković, M., Soumis, F., & Desrosiers, J. (1998). The operational airline crew scheduling problem. Transportation science, 32(3), 232–245. https://doi.org/10.1287/trsc.32.3.232
- [26] Dillon, J. E., & Kontogiorgis, S. (1999). US Airways optimizes the scheduling of reserve flight crews. Interfaces, 29(5), 123–131. https://doi.org/10.1287/inte.29.5.123
- [27] Sze, S.-N., Suk Fong, A. N., & Chiew, K. L. (2012). An insertion heuristic manpower scheduling for in-flight catering service application. Computational logistics: third international conference, iccl 2012, (pp. 206–216). ICCL. https://doi.org/10.1007/978-3-642-33587-7_15
- [28] Guo, Y., Mellouli, T., Suhl, L., & Thiel, M. P. (2006). A partially integrated airline crew scheduling approach with time-dependent crew capacities and multiple home bases. European journal of operational research, 171(3), 1169–1181. https://doi.org/10.1016/j.ejor.2005.01.024
- [29] Zeghal, F. M., & Minoux, M. (2006). Modeling and solving a crew assignment problem in air transportation. European journal of operational research, 175(1), 187–209. https://doi.org/10.1016/j.ejor.2004.11.028
- [30] Medard, C. P., & Sawhney, N. (2007). Airline crew scheduling from planning to operations. European journal of operational research, 183(3), 1013–1027. https://doi.org/10.1016/j.ejor.2005.12.046
- [31] Souai, N., & Teghem, J. (2009). Genetic algorithm based approach for the integrated airline crew-pairing and rostering problem. European journal of operational research, 199(3), 674–683. https://doi.org/10.1016/j.ejor.2007.10.065
- [32] Ho, S. C., & Leung, J. M. Y. (2010). Solving a manpower scheduling problem for airline catering using metaheuristics. European journal of operational research, 202(3), 903–921. https://doi.org/10.1016/j.ejor.2009.06.030
- [33] Ghiani, G., Guerriero, E., Manni, A., Manni, E., & Potenza, A. (2013). Simultaneous personnel and vehicle shift scheduling in the waste management sector. Waste management, 33(7), 1589–1594. https://doi.org/10.1016/j.wasman.2013.04.001
- [34] Peters, E., de Matta, R., & Boe, W. (2007). Short-term work scheduling with job assignment flexibility for a multi-fleet transport system. European journal of operational research, 180(1), 82–98. https://doi.org/10.1016/j.ejor.2006.02.032
- [35] de Matta, R., & Peters, E. (2009). Developing work schedules for an inter-city transit system with multiple driver types and fleet types. European journal of operational research, 192(3), 852–865. https://doi.org/10.1016/j.ejor.2007.09.045
- [36] Al-Yakoob, S. M., & Sherali, H. D. (2007). Mixed-integer programming models for an employee scheduling problem with multiple shifts and work locations. Annals of operations research, 155, 119–142. https://doi.org/10.1007/s10479-007-0210-4
- [37] Bard, J. F., & Purnomo, H. W. (2005). A column generation-based approach to solve the preference scheduling problem for nurses with downgrading. Socio-economic planning sciences, 39(3), 193–213. https://doi.org/10.1016/j.seps.2004.04.001
- [38] Beliën, J., & Demeulemeester, E. (2008). A branch-and-price approach for integrating nurse and surgery scheduling. European journal of operational research, 189(3), 652–668. https://doi.org/10.1016/j.ejor.2006.10.060
- [39] Dowsland, K. A., & Thompson, J. M. (2000). Solving a nurse scheduling problem with knapsacks, networks and tabu search. Journal of the operational research society, 51(7), 825–833. https://doi.org/10.1057/palgrave.jors.2600970
- [40] Aickelin, U., & Dowsland, K. A. (2004). An indirect genetic algorithm for a nurse-scheduling problem. Computers & operations research, 31(5), 761–778. https://doi.org/10.1016/S0305-0548(03)00034-0
- [41] Jaumard, B., Semet, F., & Vovor, T. (1998). A generalized linear programming model for nurse scheduling. European journal of operational research, 107(1), 1–18. https://doi.org/10.1016/S0377-2217(97)00330-5
- [42] Cheng, B. M. W., Lee, J. H. M., & Wu, J. C. K. (1997). A nurse rostering system using constraint programming and redundant modeling. IEEE transactions on information technology in biomedicine, 1(1), 44–54. https://doi.org/10.1109/4233.594027
- [43] Siferd, S. P., & Benton, W. C. (1994). A decision modes for shift scheduling of nurses. European journal of operational research, 74(3), 519–527. https://doi.org/10.1016/0377-2217(94)90228-3
- [44] Nooriafshar, M. (1995). A heuristic approach to improving the design of nurse training schedules. European journal of operational research, 81(1), 50–61. https://doi.org/10.1016/0377-2217(93)E0131-G
- [45] Lukman, D., May, J. H., Shuman, L. J., & Wolfe, H. B. (1991). Knowledge-based schedule formulation and maintenance under uncertainty. Journal of the society for health systems, 2(2), 42–64. https://europepmc.org/article/med/1760545
- [46] Burke, E., De Causmaecker, P., & Vanden Berghe, G. (1999). A hybrid tabu search algorithm for the nurse rostering problem. Simulated evolution and learning: Second asia-pacific conference on simulated evolution and learning. (pp. 187–194). Springer. https://doi.org/10.1007/3-540-48873-1_25
- [47] Burke, E., Cowling, P., De Causmaecker, P., & Berghe, G. Vanden. (2001). A memetic approach to the nurse rostering problem. Applied intelligence, 15, 199–214. https://doi.org/10.1023/A:1011291030731
- [48] Bellanti, F., Carello, G., Della Croce, F., & Tadei, R. (2004). A greedy-based neighborhood search approach to a nurse rostering problem. European journal of operational research, 153(1), 28–40. https://doi.org/10.1016/S0377-2217(03)00096-1
- [49] Gutjahr, W. J., & Rauner, M. S. (2007). An ACO algorithm for a dynamic regional nurse-scheduling problem in Austria. Computers & operations research, 34(3), 642–666. https://doi.org/10.1016/j.cor.2005.03.018
- [50] Burke, E. K., Li, J., & Qu, R. (2010). A hybrid model of integer programming and variable neighbourhood search for highly-constrained nurse rostering problems. European journal of operational research, 203(2), 484–493. https://doi.org/10.1016/j.ejor.2009.07.036
- [51] Glass, C. A., & Knight, R. A. (2010). The nurse rostering problem: A critical appraisal of the problem structure. European journal of operational research, 202(2), 379–389. https://doi.org/10.1016/j.ejor.2009.05.046
- [52] Topaloglu, S., & Selim, H. (2010). Nurse scheduling using fuzzy modeling approach. Fuzzy sets and systems, 161(11), 1543–1563. https://doi.org/10.1016/j.fss.2009.10.003
- [53] Bertels, S., & Fahle, T. (2006). A hybrid setup for a hybrid scenario: combining heuristics for the home health care problem. Computers & operations research, 33(10), 2866–2890. https://doi.org/10.1016/j.cor.2005.01.015
- [54] Eveborn, P., Flisberg, P., & Rönnqvist, M. (2006). Laps Care an operational system for staff planning of home care. European journal of operational research, 171(3), 962–976. https://doi.org/10.1016/j.ejor.2005.01.011
- [55] Akjiratikarl, C., Yenradee, P., & Drake, P. R. (2007). PSO-based algorithm for home care worker scheduling in the UK. Computers & industrial engineering, 53(4), 559–583. https://doi.org/10.1016/j.cie.2007.06.002
- [56] Chien, C.-F., Tseng, F.-P., & Chen, C.-H. (2008). An evolutionary approach to rehabilitation patient scheduling: A case study. European journal of operational research, 189(3), 1234–1253. https://doi.org/10.1016/j.ejor.2007.01.062
- [57] Topaloglu, S. (2006). A multi-objective programming model for scheduling emergency medicine residents. Computers & industrial engineering, 51(3), 375–388. https://doi.org/10.1016/j.cie.2006.08.003
- [58] Topaloglu, S. (2009). A shift scheduling model for employees with different seniority levels and an application in healthcare. European journal of operational research, 198(3), 943–957. https://doi.org/10.1016/j.ejor.2008.10.032
- [59] Yang, C. C., Lin, W. T., Chen, H. M., & Shi, Y. H. (2009). Improving scheduling of emergency physicians using data mining analysis. Expert systems with applications, 36(2), 3378–3387. https://doi.org/10.1016/j.eswa.2008.02.069
- [60] Beliën, J., Demeulemeester, E., & Cardoen, B. (2009). A decision support system for cyclic master surgery scheduling with multiple objectives. Journal of scheduling, 12(2), 147–161. https://doi.org/10.1007/s10951-008-0086-4
- [61] Butler, D. B., & Maydell, U. M. (1979). Manpower scheduling in the edmonton police department. INFOR: Information systems and operational research, 17(4), 366–372. https://doi.org/10.1080/03155986.1979.11731754
- [62] Sinuany-Stern, Z., & Teomi, Y. (1986). Multi-objective scheduling plans for security guards. Journal of the operational research society, 37(1), 67–77. https://doi.org/10.1057/jors.1986.9
- [63] Taylor, P. E., & Huxley, S. J. (1989). A break from tradition for the San Francisco police: Patrol officer scheduling using an optimization-based decision support system. Interfaces, 19(1), 4–24. https://doi.org/10.1287/inte.19.1.4
- [64] Ernst, A., Hourigan, P., Krishnamoorthy, M., Mills, G., Nott, H., & Sier, D. (1999). Rostering ambulance officers. Proceedings of the 15th national conference of the australian society for operations research, gold coast (pp. 470–481). Gold Coast. https://doi.org/10.1007/978-3-540-72397-4_3
- [65] Rajagopalan, H. K., & Saydam, C. (2009). A minimum expected response model: formulation, heuristic solution, and application. Socio-economic planning sciences, 43(4), 253–262. https://doi.org/10.1016/j.seps.2008.12.003
- [66] Fernandez-Viagas, V., & Framinan, J. M. (2014). Integrated project scheduling and staff assignment with controllable processing times. The scientific world journal, 2014(1), 924120. https://doi.org/10.1155/2014/924120
- [67] Mould, G. I. (1996). Case study of manpower planning for clerical operations. Journal of the operational research society, 47(3), 358–368. https://doi.org/10.1057/jors.1996.35
- [68] Buffa, E. S., Krajewski, L. J., & Ritzman, L. P. (1977). Disaggregation in manufacturing and service organizations: survey of problems and research. Decision sciences, 8(1), 1–18. https://doi.org/10.1111/j.1540-5915.1977.tb01064.x
- [69] Rocha, M., Oliveira, J. F., & Carravilla, M. A. (2014). A constructive heuristic for staff scheduling in the glass industry. Annals of operations research, 217, 463–478. https://doi.org/10.1007/s10479-013-1525-y
- [70] Hasani-Goodarzi, A., Rabbani, M., & Manavizade, N. (2012). A novel mathematical model for manpower scheduling in break (relief) times in mixed model assembly lines. Procedia-social and behavioral sciences, 62, 1371–1377. https://doi.org/10.1016/j.sbspro.2012.09.234
- [71] SHAHNAZARI, S. P., TAVAKKOLI, M. R., & Kazemipoor, H. (2011). Solving a bi-objective manpower scheduling problem considering the utility of objective functions. https://doi.org/10.5829/idosi.ije.2011.24.03b.05
- [72] Savino, M. M., Brun, A., & Mazza, A. (2014). Dynamic workforce allocation in a constrained flow shop with multi-agent system. Computers in industry, 65(6), 967–975. https://doi.org/10.1016/j.compind.2014.02.016
- [73] Lilly, M. T., Emovon, I., Ogaji, S. O. T., & Probert, S. D. (2007). Four-day service-staff work-week in order to complete maintenance operations more effectively in a Nigerian power-generating station. Applied energy, 84(10), 1044–1055. https://doi.org/10.1016/j.apenergy.2007.02.012
- [74] Yare, Y., & Venayagamoorthy, G. K. (2010). Optimal maintenance scheduling of generators using multiple swarms-MDPSO framework. Engineering applications of artificial intelligence, 23(6), 895–910. https://doi.org/10.1016/j.engappai.2010.05.006
- [75] Eitzen, G. (1999). Rostering multi-skilled employees efficiently and fairly: a column generation and constraint branching approach. http://dx.doi.org/10.1023/B:ANOR.0000019087.46656.e2
- [76] Ernst, A. T., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff scheduling and rostering: A review of applications, methods and models. European journal of operational research, 153(1), 3–27. https://doi.org/10.1016/S0377-2217(03)00095-X
- [77] Kazemipoor, H., Tavakkoli-Moghaddam, R., & Shahnazari-Shahrezaei, P. (2013). Solving a novel multi-skilled project scheduling model by scatter search. South african journal of industrial engineering, 24(1), 121–131. https://B2n.ir/eq9165
- [78] Williams, H. P. (2013). Model building in mathematical programming. John Wiley & Sons. https://B2n.ir/zf8236
- [79] Koppula, K., & Rodrigues, L. L. R. (2012). Job scheduling of nurse staffing: A dynamic programming approacH. International journal of research in commerce, it & management, 2(1). https://B2n.ir/zk8087
- [80] Clausen, T. (2010). A dynamic programming-based heuristic for the shift design problem in airport ground handling. https://B2n.ir/gw1150
- [81] Burke, E. K., & Curtois, T. (2010). An ejection chain method and a branch and price algorithm applied to the instances of the first international nurse rostering competition, 2010. Proceedings of the 8th international conference on the practice and theory of automated timetabling patat (Vol. 10, p. 13). Queen's university belfast. https://B2n.ir/gq8796
- [82] Brunner, J. O., & Bard, J. F. (2013). Flexible weekly tour scheduling for postal service workers using a branch and price. Journal of scheduling, 16, 129–149. https://doi.org/10.1007/s10951-011-0265-6
- [83] Shahnazari-Shahrezaei, P., Tavakkoli-Moghaddam, R., & Kazemipoor, H. (2013). Solving a new fuzzy multi-objective model for a multi-skilled manpower scheduling problem by particle swarm optimization and elite tabu search. The international journal of advanced manufacturing technology, 64, 1517–1540. https://doi.org/10.1007/s00170-012-4119-y
- [84] Cai, Y., Zhang, Z., Guo, S., Qin, H., & Lim, A. (2013). A tree-based tabu search algorithm for the manpower allocation problem with timewindows and job-teaming constraints. IJCAI (pp. 496–502). IJCAI. https://www.ijcai.org/Proceedings/13/Papers/081.pdf
- [85] Mohan, B. C., & Baskaran, R. (2012). A survey: Ant colony optimization based recent research and implementation on several engineering domain. Expert systems with applications, 39(4), 4618–4627. https://doi.org/10.1016/j.eswa.2011.09.076
- [86] Iacopino, C., Palmer, P., Brewer, A., Policella, N., & Donati, A. (2013). EO constellation mps based on ant colony optimization algorithms. 2013 6th international conference on recent advances in space technologies (RAST) (pp. 159–164). IEEE. https://doi.org/10.1109/RAST.2013.6581192
- [87] Kazemipoor, H., Tavakkoli-Moghaddam, R., & Shahnazari-Shahrezaei, P. (2002). Solving a mixed-integer linear programming model for a multi-skilled project scheduling problem by simulated annealing. Management science letters, 2(2), 681–688. https://doi.org/10.5267/j.msl.2011.10.010
- [88] Chan, F. T. S., Prakash, A., Ma, H. L., & Wong, C. S. (2013). A hybrid Tabu sample-sort simulated annealing approach for solving distributed scheduling problem. International journal of production research, 51(9), 2602–2619. https://doi.org/10.1080/00207543.2012.737948
- [89] Alfadilla, N., Sentia, P. D., & Asmadi, D. (2019, June). Optimization of nurse scheduling problem using genetic algorithm: a case study. In IOP conference series: Materials science and engineering (Vol. 536, No. 1, p. 012131). IOP Publishing. https://doi.org/10.1088/1757-899X/536/1/012131
- [90] Yang, F. C., & Wu, W. T. (2012). A genetic algorithm-based method for creating impartial work schedules for nurses. International journal of electronic business management, 10(3), 182. https://B2n.ir/pn8755
- [91] Gao, S. C., & Lin, C. W. (2013). Particle swarm optimization based nurses’ shift scheduling. Proceedings of the institute of industrial engineers asian conference 2013 (pp. 775–782). Springer. https://doi.org/10.1007/978-981-4451-98-7_93
- [92] Glover, F. (1977). Heuristics for integer programming using surrogate constraints. Decision sciences, 8(1), 156–166. https://doi.org/10.1111/j.1540-5915.1977.tb01074.x
- [93] Glover, F. (1997). A template for scatter search and path relinking. European conference on artificial evolution (pp. 1–51). Springer. https://doi.org/10.1007/BFb0026589