ریسک‌های پیاده‌سازی بلاک‌چین در بهبود بهره‌وری اطلاعات در سازمان

نویسندگان

  • افرا فاطمی * گروه مهندسی صنایع، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

https://doi.org/10.22105/msda.v2i4.115

چکیده

هدف: هدف این پژوهش، شناسایی، ارزیابی و طبقه‌بندی ریسک‌های مرتبط با پیاده‌سازی فناوری بلاک‌چین در سازمان‌ها و بررسی تاثیر آن بر بهره‌وری اطلاعات است. اهمیت این تحقیق در این است که با گسترش استفاده از بلاک‌چین در فرایندهای سازمانی، شناخت ریسک‌های بالقوه می‌تواند به افزایش اعتماد، کارایی و موفقیت در اجرای پروژه‌ها کمک کند.

روش‌شناسی پژوهش: ابتدا با مرور ادبیات و مصاحبه با خبرگان، ۹ گروه اصلی ریسک شامل ریسک‌های بازار، فنی، منابع انسانی، مالی، مدیریت پروژه، ساختار سازمانی، محیط سازمانی، منابع و استراتژیک شناسایی شد. سپس با استفاده از روش تحلیل عاملی تاییدی میزان تاثیر هر ریسک بررسی و در گام بعدی با بهره‌گیری از پویایی سیستم، روابط میان ریسک‌ها مدل‌سازی و در نرم‌افزار Vensim شبیه‌سازی گردید.

یافته‌ها: نتایج تحلیل‌ها نشان داد که ریسک منابع انسانی بیشترین تاثیر را در شکست یا موفقیت پیاده‌سازی بلاک‌چین دارد. پس از آن، ریسک‌های استراتژیک، مدیریت پروژه و ساختار سازمانی در اولویت دوم اهمیت قرار گرفتند. یافته‌ها همچنین بیانگر این است که مدیریت موثر منابع انسانی و برنامه‌ریزی دقیق پروژه، نقش حیاتی در کاهش ریسک کلی پروژه‌های بلاک‌چین دارد.

اصالت/ارزش افزوده علمی: نوآوری این پژوهش در ترکیب رویکردهای کمی و پویایی سیستم برای تحلیل هم‌زمان روابط پیچیده بین ریسک‌هاست. نتایج این تحقیق می‌تواند به مدیران سازمان‌ها در درک بهتر ریسک‌ها، تصمیم‌گیری آگاهانه‌تر و بهبود بهره‌وری اطلاعات هنگام استقرار فناوری بلاک‌چین کمک کند.

کلمات کلیدی:

بلاک‌چین، ریسک پیاده‌سازی، بهره‌وری اطلاعات، پویایی سیستم، تحلیل عاملی تاییدی

مراجع

  1. [1] Kouhizadeh, M., Saberi, S., & Sarkis, J. (2021). Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers. International journal of production economics, 231, 107831. https://doi.org/10.1016/j.ijpe.2020.107831

  2. [2] Abidi, M. H., Alkhalefah, H., Umer, U., & Mohammed, M. K. (2021). Blockchain-based secure information sharing for supply chain management: Optimization assisted data sanitization process. International journal of intelligent systems, 36(1), 260–290. https://doi.org/10.1002/int.22299

  3. [3] Azar, A., Kolyaei, M., Amini, M. R., & and Rajabzadeh-Qatri, A. (2016). Designing an integrated mathematical model for a closed-loop supply chain. Management research in Iran, 20(1), 1–28. (In Persian.). https://www.sid.ir/paper/510195/fa#downloadbottom

  4. [4] Yuan, H., Qiu, H., Bi, Y., Chang, S. H., & Lam, A. (2020). Retracted article: Analysis of coordination mechanism of supply chain management information system from the perspective of block chain. Information systems and e-business management, 18(4), 681–703. https://doi.org/10.1007/s10257-018-0391-1

  5. [5] Leng, J., Ruan, G., Jiang, P., Xu, K., Liu, Q., Zhou, X., & Liu, C. (2020). Blockchain-empowered sustainable manufacturing and product lifecycle management in industry 4.0: A survey. Renewable and sustainable energy reviews, 132, 110112. https://doi.org/10.1016/j.rser.2020.110112

  6. [6] Mahdavi, I., & Gholamiyan, N. (2021). Multi-objective optimization for closed-loop supply chains through a simulation approach. 7th international conference on recent advances in industrial management and engineering. Civilica. (In Persian.). https://civilica.com/doc/1223206

  7. [7] Nicholas, G. (2014). An integrated risk evaluation model for mineral deposits [Thesis]. https://core.ac.uk/download/pdf/79079586.pdf

  8. [8] Kumar, R. L. (2002). Managing risks in IT projects: An options perspective. Information & management, 40(1), 63–74. https://doi.org/10.1016/S0378-7206(01)00133-1

  9. [9] Arnold, R. D., & Wade, J. P. (2015). A definition of systems thinking: A systems approach. Procedia computer science, 44, 669–678. https://doi.org/10.1016/j.procs.2015.03.050

  10. [10] Fathi, M. R., & Sadeghi, S. (2021). Identification and ranking the key factors of block chain success in the sustainable supply chain of the food industry with an integrated approach of interpretive structural modelling and fuzzy DEMATEL. Journal of logistics thought scientific publication, 20(76), 175-202. (In Persian.). https://www.magiran.com/p2279233

  11. [11] Aghajani Mir, S. F. , Rajabi kafshgar, F. Z. and Arab, A. (2022). Identifying and prioritizing challenges of implementing blockchain technology in the supply chain: A Bayesian BWM group-based approach. Journal of decisions and operations research, 6(4), 464-483. (In Persian). https://doi.org/10.22105/dmor.2021.277066.1336

  12. [12] Golzar, A. H., & Pilehvari, N. (2017). Presenting a model for evaluating the impact of blockchain technology on supply chain performance using fuzzy inference systems in the automotive industry. Industrial management., 55, 50-66. (In Persian). https://B2n.ir/dh3720

  13. [13] Rahimi, A., & Bushehri, A. (2019). Investigating the role of blockchain technology in improving the performance of the defense industry supply chain. First international conference on knowledge management, blockchain and economics, Tehran (pp. 45-67). Civilica. (In Persian). https://civilica.com/doc/968458

  14. [14] Taami, A., & Riahi, H. (2019). Supply chain, blockchain technology and its impact on preventing smuggling. Hidden economy, 1, 39-63. (In Persian). https://elmnet.ir/doc/2123013-11002

  15. [15] Rezaei, M., & Taeizadeh, A. (2019). The impact of blockchain on supply chain information flow. Quarterly journal of information management sciences and technologies, 5(1), 3-27. (In Persian). https://doi.org/10.22091/stim.2019.1377

  16. [16] Mohammadi, A. S., Alam Tabriz, A., & Pishvaei, S. (2018). Presenting a model for sustainable supply chain master planning considering the integration of financial and physical flows. Industrial management perspectives, 8(1), 39-62. (In Persian). https://jimp.sbu.ac.ir/article_87179.html

  17. [17] Seuring, S., Aman, S., Hettiarachchi, B. D., de Lima, F. A., Schilling, L., & Sudusinghe, J. I. (2021). Cleaner logistics and supply chain. Cleaner logistics and supply chain, 3(2022), 2772–3909. https://www.karlancer.com/api/file/1717230993-0NUo.pdf

  18. [18] Javaid, M., Haleem, A., Singh, R. P., Suman, R., & Gonzalez, E. S. (2022). Understanding the adoption of Industry 4.0 technologies in improving environmental sustainability. Sustainable operations and computers, 3, 203–217. https://doi.org/10.1016/j.susoc.2022.01.008

  19. [19] Omar, I. A., Debe, M., Jayaraman, R., Salah, K., Omar, M., & Arshad, J. (2022). Blockchain-based supply chain traceability for COVID-19 personal protective equipment. Computers & industrial engineering, 167, 107995. https://doi.org/10.1016/j.cie.2022.107995

  20. [20] Agi, M. A. N., & Jha, A. K. (2022). Blockchain technology in the supply chain: An integrated theoretical perspective of organizational adoption. International journal of production economics, 247, 108458. https://doi.org/10.1016/j.ijpe.2022.108458

  21. [21] Chbaik, N., Khiat, A., Bahnasse, A., & Ouajji, H. (2022). The application of smart supply chain technologies in the Moroccan logistics. Procedia computer science, 198, 578–583. https://doi.org/10.1016/j.procs.2021.12.289

  22. [22] El Wali, M., Golroudbary, S. R., & Kraslawski, A. (2021). Circular economy for phosphorus supply chain and its impact on social sustainable development goals. Science of the total environment, 777, 146060. https://doi.org/10.1016/j.scitotenv.2021.146060

  23. [23] Dietrich, F., Mehmedovic, E., Turgut, A., Louw, L., & Palm, D. (2021). Classification model of supply chain events regarding their transferability to blockchain technology. Proceedings of the 2nd conference on production systems and logistics: CPSL 2021, 25-28 May 2021, Vancouver, Canada (pp. 87–96). Leibniz-Universität Hannover. https://doi.org/10.15488/11284

  24. [24] Harshitha, M. S., Shashidhar, R., & Roopa, M. (2021). Block chain based agricultural supply chain-A review. Global transitions proceedings, 2(2), 220–226. https://doi.org/10.1016/j.gltp.2021.08.041

  25. [25] Sunmola, F. T. (2021). Context-aware blockchain-based sustainable supply chain visibility management. Procedia computer science, 180, 887–892. https://doi.org/10.1016/j.procs.2021.01.339

  26. [26] Zhang, T., Li, J., & Jiang, X. (2021). Analysis of supply chain finance based on blockchain. Procedia computer science, 187, 1–6. https://doi.org/10.1016/j.procs.2021.04.025

  27. [27] Toorajipour, R., Sohrabpour, V., Nazarpour, A., Oghazi, P., & Fischl, M. (2021). Artificial intelligence in supply chain management: A systematic literature review. Journal of business research, 122, 502–517. https://doi.org/10.1016/j.jbusres.2020.09.009

  28. [28] Ahmadini, A. A. H., Modibbo, U. M., Shaikh, A. A., & Ali, I. (2021). Multi-objective optimization modelling of sustainable green supply chain in inventory and production management. Alexandria engineering journal, 60(6), 5129–5146. https://doi.org/10.1016/j.aej.2021.03.075

  29. [29] Sabbagh, P., Pourmohamad, R., Elveny, M., Beheshti, M., Davarpanah, A., Metwally, A.S.M. Ali, S., Mohammed, A.S. (2021). Evaluation and classification risks of implementing blockchain in the drug supply chain with a new hybrid sorting method. Sustainability, 13(20), 11466. https://doi.org/10.3390/su132011466

  30. [30] Pal, K. (2020). Internet of things and blockchain technology in apparel manufacturing supply chain data management. Procedia computer science, 170, 450–457. https://doi.org/10.1016/j.procs.2020.03.088

  31. [31] Dircksen, M., & Feldmann, C. (2020). Holistic evaluation of the impacts of additive manufacturing on sustainability, distribution costs, and time in global supply chains. Transportation research procedia, 48, 2140–2165. https://doi.org/10.1016/j.trpro.2020.08.272

  32. [32] Saetta, S., & Caldarelli, V. (2020). How to increase the sustainability of the agri-food supply chain through innovations in 4.0 perspective: A first case study analysis. Procedia manufacturing, 42, 333–336. https://doi.org/10.1016/j.promfg.2020.02.083

  33. [33] Junge, A. L., & Straube, F. (2020). Sustainable supply chains-digital transformation technologies’ impact on the social and environmental dimension. Procedia manufacturing, 43, 736–742. https://doi.org/10.1016/j.promfg.2020.02.110

  34. [34] Dwivedi, S. K., Amin, R., & Vollala, S. (2020). Blockchain based secured information sharing protocol in supply chain management system with key distribution mechanism. Journal of information security and applications, 54, 102554. https://doi.org/10.1016/j.jisa.2020.102554

  35. [35] Yadav, S., & Singh, S. P. (2021). An integrated fuzzy-ANP and fuzzy-ISM approach using blockchain for sustainable supply chain. Journal of enterprise information management, 34(1), 54–78. https://doi.org/10.1108/JEIM-09-2019-0301

  36. [36] Behnke, K., & Janssen, M. (2020). Boundary conditions for traceability in food supply chains using blockchain technology. International journal of information management, 52, 101969. https://doi.org/10.1016/j.ijinfomgt.2019.05.025

  37. [37] Bumblauskas, D., Mann, A., Dugan, B., & Rittmer, J. (2020). A blockchain use case in food distribution: Do you know where your food has been? International journal of information management, 52, 102008. https://doi.org/10.1016/j.ijinfomgt.2019.09.004

  38. [38] Prashar, D., Jha, N., Jha, S., Lee, Y., & Joshi, G. P. (2020). Blockchain-based traceability and visibility for agricultural products: A decentralized way of ensuring food safety in india. Sustainability, 12(8), 3497. https://doi.org/10.3390/su12083497

  39. [39] Tijan, E., Aksentijević, S., Ivanić, K., & Jardas, M. (2019). Blockchain technology implementation in logistics. Sustainability, 11(4), 1185. https://doi.org/10.3390/su11041185

  40. [40] Zhao, G., Liu, S., Lopez, C., Lu, H., Elgueta, S., Chen, H., & Boshkoska, B. M. (2019). Blockchain technology in agri-food value chain management: A synthesis of applications, challenges and future research directions. Computers in industry, 109, 83–99. https://doi.org/10.1016/j.compind.2019.04.002

  41. [41] Mondal, S., Wijewardena, K. P., Karuppuswami, S., Kriti, N., Kumar, D., & Chahal, P. (2019). Blockchain inspired RFID-based information architecture for food supply chain. IEEE internet of things journal, 6(3), 5803–5813. https://doi.org/10.1109/JIOT.2019.2907658

  42. [42] Kousiouris, G., Tsarsitalidis, S., Psomakelis, E., Koloniaris, S., Bardaki, C., Tserpes, K., Nikolaidou, M., & Anagnostopoulos, D. (2019). A microservice-based framework for integrating IoT management platforms, semantic and AI services for supply chain management. ICT express, 5(2), 141–145. https://doi.org/10.1016/j.icte.2019.04.002

  43. [43] Manupati, V. K., Schoenherr, T., Ramkumar, M., Wagner, S. M., Pabba, S. K., & Inder Raj Singh, R. (2020). A blockchain-based approach for a multi-echelon sustainable supply chain. International journal of production research, 58(7), 2222–2241. https://doi.org/10.1080/00207543.2019.1683248

  44. [44] Kshetri, N. (2018). 1 Blockchain’s roles in meeting key supply chain management objectives. International journal of information management, 39, 80–89. https://doi.org/10.1016/j.ijinfomgt.2017.12.005

  45. [45] Ge, L., Brewster, C., Spek, J., Smeenk, A., Top, J., Van Diepen, F., Bob, K., De Wildt, R. & De, M. (2017). Blockchain for agriculture and food: Findings from the pilot study. Wageningen economic research. https://library.wur.nl/WebQuery/wurpubs/530264

  46. [46] Laitinen, E. K. (2008). Value drivers in Finnish family-owned firms: Profitability, growth and risk. International journal of accounting and finance, 1(1), 1–41. https://doi.org/10.1504/IJAF.2008.020235

  47. [47] Kamrad, B., & Ritchken, P. (1991). Multinomial approximating models for options with k state variables. Management science, 37(12), 1640–1652. https://doi.org/10.1287/mnsc.37.12.1640

  48. [48] Deng, S. J., & Oren, S. S. (2006). Electricity derivatives and risk management. Energy, 31(6–7), 940–953. https://doi.org/10.1016/j.energy.2005.02.015

  49. [49] Maguire, S. (2002). Identifying risks during information system development: Managing the process. Information management & computer security, 10(3), 126–134. https://doi.org/10.1108/09685220210431881

  50. [50] Baccarini, D., Salm, G., & Love, P. E. D. (2004). Management of risks in information technology projects. Industrial management & data systems, 104(4), 286–295. https://doi.org/10.1108/02635570410530702

  51. [51] Nandha, M., & Hammoudeh, S. (2007). Systematic risk, and oil price and exchange rate sensitivities in Asia-Pacific stock markets. Research in international business and finance, 21(2), 326–341. https://doi.org/10.1016/j.ribaf.2006.09.001

  52. [52] Bahli, B., & Rivard, S. (2005). Validating measures of information technology outsourcing risk factors. Omega, 33(2), 175–187. https://doi.org/10.1016/j.omega.2004.04.003

  53. [53] Agarwal, R., Dugas, M., Gao, G., & Kannan, P. K. (2020). Emerging technologies and analytics for a new era of value-centered marketing in healthcare. Journal of the academy of marketing science, 48, 9–23. https://doi.org/10.1007/s11747-019-00692-4

  54. [54] Bannerman, P. L. (2008). Risk and risk management in software projects: A reassessment. Journal of systems and software, 81(12), 2118–2133. https://doi.org/10.1016/j.jss.2008.03.059

  55. [55] Hartman, F., & Ashrafi, R. (2002). Project Management in the information technology and information systems industry. Project management journal, 33(3), 5–15. https://www.wcu.edu/pmi/1998/IM04.PDF

  56. [56] Aloini, D., Dulmin, R., & Mininno, V. (2007). Risk management in ERP project introduction: Review of the literature. Information & management, 44(6), 547–567. https://doi.org/10.1016/j.im.2007.05.004

  57. [57] Shimizu, T., Won Park, Y., & Hong, P. (2012). Project managers for risk management: Case for Japan. Benchmarking: an international journal, 19(4/5), 532–547. https://doi.org/10.1108/14635771211257990

  58. [58] Royer, P. S. (2000). Risk management: The undiscovered dimension of project management. Project management journal, 31(1), 6–13. https://doi.org/10.1177/875697280003100103

  59. [59] Chatzoglou, P. D., & Diamantidis, A. D. (2009). IT/IS implementation risks and their impact on firm performance. International journal of information management, 29(2), 119–128. https://doi.org/10.1016/j.ijinfomgt.2008.04.008

  60. [60] John, A., & Lawton, T. C. (2018). International political risk management: Perspectives, approaches and emerging agendas. International journal of management reviews, 20(4), 847–879. https://doi.org/10.1111/ijmr.12166

  61. [61] Verano-Tacoronte, D., & Melián-González, S. (2008). Human resources control systems and performance: The role of uncertainty and risk propensity. International journal of manpower, 29(2), 161–187. https://doi.org/10.1108/01437720810872712

  62. [62] Jiang, J. J., Klein, G., & Means, T. L. (2000). Project risk impact on software development team performance. Project management journal, 31(4), 19–26. https://doi.org/10.1177/875697280003100404

  63. [63] Matthew, A. (2014). Human resource management: The Enabler of innovation in organizations. BVIMR management edge, 7(1), 53. https://B2n.ir/bf1858

  64. [64] Araujo Wickboldt, J., Armando Bianchin, L., Castagna Lunardi, R., Girardi Andreis, F., da Costa Cordeiro, W. L., Bonato Both, C., Zambenedetti Granville, L., Paschoal Gaspary, G., Trastour, D., & Bartolini, C. (2009). Improving IT Change Management Processes with Automated Risk Assessment. Integrated Management of systems, services, processes and people in IT. DSOM 2009. Lecture notes in computer science, vol 5841. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04989-7_6

  65. [65] Laitinen, E. K., & Laitinen, T. (1998). Qualified audit reports in Finland: Evidence from large companies. European accounting review, 7(4), 639–653. https://doi.org/10.1080/096381898336231

  66. [66] Chatterjee, D., & Ramesh, V. C. (1999). Real options for risk management in information technology projects. Proceedings of the 32nd annual Hawaii international conference on systems sciences. 1999. HICSS-32. Abstracts and cd-rom of full papers. IEEE. https://doi.org/10.1109/HICSS.1999.772829

  67. [67] Day, K., Patel, Z., & Rother, H. A. (2019). Applying social risk theory to competing constructions of risk in environmental assessment. Environmental impact assessment review, 79, 106312. https://doi.org/10.1016/j.eiar.2019.106312

  68. [68] St-Pierre, J., & Lacoursière, R. (2017). Proactive management of operating risks: A lever to improve external funding for SMEs? , In risk management (pp.85-106). Wiley online library. http://dx.doi.org/10.1002/9781119475002.ch5

  69. [69] Ojala, M., & Hallikas, J. (2006). Investment decision-making in supplier networks: Management of risk. International journal of production economics, 104(1), 201–213. https://doi.org/10.1016/j.ijpe.2005.03.006

  70. [70] Costa, H. R., Barros, M. de O., & Travassos, G. H. (2007). Evaluating software project portfolio risks. Journal of systems and software, 80(1), 16–31. https://doi.org/10.1016/j.jss.2006.03.038

  71. [71] Holland, J. L. (1997). Making vocational choices: A theory of vocational personalities and work environments, (3rd Ed). Psychological assessment resources. https://psycnet.apa.org/record/1997-08980-000

دانلود

چاپ شده

2025-10-07

شماره

نوع مقاله

مقالات شماره جاری

ارجاع به مقاله

فاطمی ا. (2025). ریسک‌های پیاده‌سازی بلاک‌چین در بهبود بهره‌وری اطلاعات در سازمان. علوم مدیریت و تحلیل تصمیم , 2(4), 279-293. https://doi.org/10.22105/msda.v2i4.115

مقالات مشابه

##common.pagination##

همچنین برای این مقاله می‌توانید شروع جستجوی پیشرفته مقالات مشابه.