کاربرد هوش مصنوعی در تصمیمگیری و تحلیل حساسیت برای پیشبینی کمبود دارو و تجهیزات پزشکی در بحرانهای سلامت
چکیده
هدف: این پژوهش با هدف بررسی نقش هوش مصنوعی در بهبود تصمیمگیری و تحلیل حساسیت برای پیشبینی کمبود دارو و تجهیزات پزشکی در بحرانهای سلامت انجام شده است. اهمیت این موضوع از آنجا ناشی میشود که در شرایط بحرانی، مانند پاندمی کووید-۱۹، کمبود منابع حیاتی میتواند پیامدهای گسترده انسانی و اقتصادی به همراه داشته باشد.
روششناسی پژوهش :پژوهش حاضر از نوع توصیفی–تحلیلی و کمی است. دادهها از مدیران و کارشناسان حوزه بهداشت و درمان در کلانشهر مشهد از طریق پرسشنامه و مصاحبه نیمهساختاریافته گردآوری شد. برای مدلسازی و پیشبینی از الگوریتمهای یادگیری ماشین شامل رگرسیون خطی و شبکه عصبی مصنوعی استفاده گردید و جهت اولویتبندی عوامل تاثیرگذار از روشهای تصمیمگیری چندمعیاره AHP) و (TOPSIS بهره گرفته شد. تحلیل حساسیت نیز برای شناسایی عوامل کلیدی موثر بر دقت پیشبینیها انجام شد.
یافتهها :نتایج نشان داد که اختلالات زنجیره تامین و تغییرات فصلی بیشترین تأثیر را بر کمبود دارو و تجهیزات پزشکی دارند. مدل شبکه عصبی توانست الگوهای غیرخطی را با دقت بالاتری شناسایی کند و پیشبینیهای دقیقتری ارایه دهد. همچنین تحلیل حساسیت تایید کرد که بهبود ظرفیت تولید داخلی و کاهش مشکلات حملونقل میتواند نقش کلیدی در کاهش کمبودها داشته باشد.
اصالت/ارزشافزوده علمی: این مطالعه برای نخستینبار مدلی ترکیبی از هوش مصنوعی و روشهای تصمیمگیری چندمعیاره را جهت پیشبینی و تحلیل حساسیت در بحرانهای بهداشتی ارایه میدهد. یافتههای این پژوهش میتواند به سیاستگذاران در بهینهسازی زنجیره تامین و تخصیص منابع در شرایط بحرانی کمک کند.
کلمات کلیدی:
هوش مصنوعی، تحلیل حساسیت، پیشبینی کمبود دارو، بحرانهای سلامت، صمیمگیری چندمعیارهمراجع
- [1] Filip, R., Gheorghita Puscaselu, R., Anchidin-Norocel, L., Dimian, M., & Savage, W. K. (2022). Global challenges to public health care systems during the COVID-19 pandemic: A review of pandemic measures and problems. Journal of personalized medicine, 12(8), 1295. https://doi.org/10.3390/jpm12081295
- [2] Cohen, J., & Rodgers, Y. van der M. (2020). Contributing factors to personal protective equipment shortages during the COVID-19 pandemic. Preventive medicine, 141, 106263. https://doi.org/10.1016/j.ypmed.2020.106263
- [3] Govindan, K., Mina, H., & Alavi, B. (2020). A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19). Transportation research part e: logistics and transportation review, 138, 101967. https://doi.org/10.1016/j.tre.2020.101967
- [4] Banji, A. F., Adekola, A. D., & Dada, S. A. (2024). Supply chain innovations to prevent pharmaceutical shortages during public health emergencies. International journal of engineering research and development, 20(11), 1242–1249. https://ijerd.com/paper/vol20-issue11/201112421249.pdf
- [5] Rosenthal, U., & Kouzmin, A. (1997). Crises and crisis management: Toward comprehensive government decision making. Journal of public administration research and theory, 7(2), 277–304. https://doi.org/10.1093/oxfordjournals.jpart.a024349
- [6] Guo, J., & Li, B. (2018). The application of medical artificial intelligence technology in rural areas of developing countries. Health equity, 2(1), 174–181. https://doi.org/10.1089/heq.2018.0037
- [7] Ugwu, O., Omolola, H. F., Sanusi, M., Onasanya, T., Ugwu, O. I., Peay, A., & Adetoun Sanusi, M. (2024). Artificial intelligence in healthcare supply chains: Enhancing resilience and reducing waste. International journal of advance research, 10, 2454–132. https://www.ijariit.com
- [8] Iqbal, T., Masud, M., Amin, B., Feely, C., Faherty, M., Jones, T., … & Vazquez, P. (2024). Towards integration of artificial intelligence into medical devices as a real-time recommender system for personalised healthcare: State-of-the-art and future prospects. Health sciences review, 10, 100150. https://doi.org/10.1016/j.hsr.2024.100150
- [9] Heidarpour, J., Hesari, S., Ghazizadeh, M., & Ghahremani, B. (2021). Intelligent health solution system. Journal of north khorasan medical sciences, 13(4), 81-86. (In Persian). https://www.sid.ir/paper/1021911/fa
- [10] Taghipour, Z., Ghorbanzadeh, P., Keramat Talatepeh, S., Zeinali, M., Ghorbanzadeh, A., & Firuz, N. (2023). Applications of artificial intelligence and machine learning in the pharmaceutical industry. The 6th national conference on new technologies in electrical, computer and mechanical engineering of Iran, Tehran, Iran. Civilica. (In Persian). https://en.civilica.com/doc/1744146/
- [11] Fan, D., Miao, R., Huang, H., Wang, X., Li, S., Huang, Q., … & Deng, R. (2024). Multimodal ischemic stroke recurrence prediction model based on the capsule neural network and support vector machine. Medicine (United States), 103(35), e39217. https://doi.org/10.1097/MD.0000000000039217
- [12] Ayesha, Noor-ul-Amin, M., Albalawi, O., Mushtaq, N., Mahmoud, E. E., Yasmeen, U., & Nabi, M. (2024). Modeling health outcomes of air pollution in the Middle East by using support vector machines and neural networks. Scientific reports, 14(1), 21517. https://doi.org/10.1038/s41598-024-71694-8
- [13] Shahabi, A., Anbiai, M. R., & Darfashi, Z. (2024). Application of artificial intelligence in supply chain management. The third international conference on economics and business management, Tehran, Iran. Civilica. (In Persian). https://civilica.com/doc/2093383/
- [14] Kumar, V. V., Sahoo, A., Balasubramanian, S. K., & Gholston, S. (2024). Mitigating healthcare supply chain challenges under disaster conditions: A holistic AI-based analysis of social media data. International journal of production research, 63(2), 779–797. https://doi.org/10.1080/00207543.2024.2316884
- [15] Dutta, P., & Deka, S. (2024). A novel approach to flood risk assessment: Synergizing with geospatial based MCDM-AHP model, multicollinearity, and sensitivity analysis in the Lower Brahmaputra Floodplain, Assam. Journal of cleaner production, 467, 142985. https://doi.org/10.1016/j.jclepro.2024.142985
- [16] Sallam, M., Shukar, S., Babar, Z. U. D., Hernández, A. F., Hossain, A., Saleem, F., Kibuule, D., & Alrasheedy, A. A. (2021). Drug shortage: Causes, impact, and mitigation strategies. Frontiers in Pharmacology, 12, 693426. https://doi.org/10.3389/fphar.2021.693426
- [17] Bilal, A. I., Bititci, U. S., & Fenta, T. G. (2024). Effective supply chain strategies in addressing demand and supply uncertainty: A case study of ethiopian pharmaceutical supply services. Pharmacy, 12(5), 132. https://doi.org/10.3390/pharmacy12050132
- [18] Rahmani, P., Mortazavi, P., Aghaei Meybodi, H. R., Patrinos, G. P., Sarhangi, N., Nikfar, S., … & Hasanzad, M. (2024). Machine learning and artificial intelligence in modern medicine. In A glimpse at medicine in the future (pp. 61–77). Springer. https://doi.org/10.1007/978-981-97-4974-4_4
- [19] Fahimi, R., Seyedkazemi, A., & Kutanaei, S. S. (2024). Prediction and sensitivity analysis of embankment dam settlement under earthquake loading using gene expression programming. Geomechanics and geoengineering, 20(1), 115–137. https://doi.org/10.1080/17486025.2024.2367439
- [20] Gifford, R., van de Baan, F., Westra, D., Ruwaard, D., & Fleuren, B. (2023). Through the looking glass: Confronting health care management’s biggest challenges in the wake of a crisis. Health Care Management Review, 48(2), 185–196. https://doi.org/10.1097/HMR.0000000000000365
- [21] Mohammadshafiei, M. R., & Mohammadshafiei, A. H. (2015). Crisis and its management solutions [presentation]. The second international conference on research in science and technology. (In Persian). https://sid.ir/paper/863272/fa
- [22] Nasarian, E., Alizadehsani, R., Acharya, U. R., & Tsui, K. L. (2023). Designing interpretable ML system to enhance trust in healthcare: A systematic review to proposed responsible clinician-AI-collaboration framework. arXiv. https://doi.org/10.48550/arXiv.2311.11055
- [23] Maccaro, A., Corti, S., Schiavone, F., Silenzi, A., Paladini, E., & Zaccagnini, G. (2023). Pandemic preparedness: A scoping review of best and promising practices. BMJ open, 13(6), e078123. https://doi.org/10.1136/bmjopen-2022-078123
- [24] Wang, H., Sun, J., Shi, Y., & Shen, T. (2022). Driving the effectiveness of public health emergency management strategies through cross-departmental collaboration: Configuration analysis based on 15 cities in China. Frontiers in Public Health, 10, 1032576. https://doi.org/10.3389/fpubh.2022.1032576
- [25] Wang, Y., Toumi, M., François, C., Millier, A., Clay, E., Hasni, M., & Dussart, C. (2022). could artificial intelligence support prediction of reimbursement decisions in scotland? A pilot project. Value in Health, 25, S145–S146. https://doi.org/10.1016/j.jval.2022.04.1270
- [26] Zhu, X., Ninh, A., Zhao, H., & Liu, Z. (2021). Demand forecasting with supply-chain information and machine learning: Evidence in the pharmaceutical industry. Production and operations management, 30(9), 3231–3252. https://doi.org/10.1111/poms.13426
- [27] Ghannem, A., Nabli, H., Djemaa, R. Ben, & Sliman, L. (2024). Enhancing pharmaceutical supply chain resilience: A comprehensive review of visibility and demand forecasting. https://doi.org/10.21203/rs.3.rs-3932079/v1
- [28] Salem, H., Kabeel, A. E., El-Said, E. M. S., & Elzeki, O. M. (2022). Predictive modelling for solar power-driven hybrid desalination system using artificial neural network regression with Adam optimization. Desalination, 522, 115411. https://doi.org/10.1016/j.desal.2021.115411
- [29] Ivanov, D., & Dolgui, A. (2022). The shortage economy and its implications for supply chain and operations management. International journal of production research, 60(24), 7141–7154. https://doi.org/10.1080/00207543.2022.2118889